Wednesday, January 28, 2015

Filled Under:

How Austin E-Waste Can Become An Asset

By Ines Flores


Electronic waste is more than improperly discarded batteries. The term encompasses nearly all appliances and digital devices that have the potential to become part of a landfill, and includes kitchen accessories as well as outdated computers. Once a limited issue, the problem is no longer restricted to wealthier consumer countries. Recycling and disposing of Austin e-waste efficiently and economically is a shared goal of most large Texas cities.

Discarded electronics are more common today because basic economic conditions have improved enough worldwide to allow people to buy and use them. Because the devices are constantly being improved, there is virtually no emphasis on extending the life of older models. The highly-publicized toxic materials they contain grab sensational headlines, but are only one facet of the overall issue.

Inside each unit a variety of precious metals exists. Even though the original computer cathode ray display monitors are gone, any device containing a printed circuit board still contains a very small but financially significant amount of gold, silver, platinum, and palladium. Metals with more exotic names such as indium and gallium also play an important part in new technologies, and have a measurable value when extracted.

Although melting down unused cell phones to extract valuable metals does not make sense individually, in large quantities the process produces more refined metal than the original ore that bore it. Costly and comparatively rare elements are only a fraction of the metals used during manufacturing a mobile phone, which also contains copper and tin. The plastics used to create housings can also be partially reused.

The key to successful recycling is profitability. It can be performed on smaller scales by individuals, but the most efficient operations employ numbers of people. Most centers begin by separating individual components manually, removing both processors and microchips from the original housing. The remaining fragments are then run through a specialized chipper that shreds them and makes more intense separation possible.

After being processed to complete the extraction, the purified products are then sold back to manufacturers. The industrialists benefit from this more direct method of mining, and consumers also see personal benefits in the form of a somewhat lower pricing structure. Disposal of outdated equipment in a responsible matter is incredibly important, but is only part of the overall view.

As the mound of electronic debris grows exponentially each year, recycling efforts have increased, but cannot keep pace with the enormous quantities that are being consistently created. The health hazards they pose are well-documented, and include lead and mercury poisoning. Exposed children experience developmental problems, and adults often suffer from respiratory and brain issues.

The total amount of used electronic parts worldwide is very difficult to calculate or track using current methods. The problem was created in part by economic realities, and can be solved by using the same motivations. While it is important to remind populations about the physical health hazards of non-recycling, the best long-term solution is the continued development of industries that thrive on processing e-waste.




About the Author:







0 comments:

Post a Comment