The term hipot is usually used as an abbreviation for high potential. It is a term that is used to refer to a certain class of electrical safety testing instruments referred to as a hipot tester. These instruments are used in the verification of the electrical insulation in finished cables, appliances, and other wired assemblies. Such assemblies include electric motors, transformers, and printed circuit boards just to mention a few.
After a product/appliance has been manufactured or assembled, it is usually normal that there will be some level of current leakage. The amount of current leakage experienced is usually minimal and is caused by voltages and internal capacitance within the product. This leakage is normal and should be expected in every device. However, there are certain cases where excessive leakage current flow can occur due to various reasons.
Faults in the design or disintegration of product insulation among many other reasons may be the cause of the excessive leakage. These flaws often cause excessive leaking of current and may give rise to electrical shock for any individual that comes into contact with the defective appliance. The essence of a hipot test is to ensure and verify that the product has enough insulation so that the user of the device may not be electrocuted.
Dielectric Withstanding Voltage, DWV, is another term used in reference to the hipot test. At the time of the test, a high voltage is applied between the conductors that carry current in the product and its metallic shielding. Upon completion, there will exist a resultant current that makes its way through the insulator material. The term used for this current is leakage current and is tested using a high potential tester.
This testing process makes one major assumption. The assumption is that if the insulation of the device is not broken by the deliberate application of excess voltage, then it should be safe for normal operation. The device should be able to withstand application of normal voltage, which is applied during normal use. The name Dielectric Withstanding Voltage comes from this assumption.
The test is aimed at stressing the insulator used in the appliance. Apart from stressing the insulator material, however, the test is additionally used to identify workmanship flaws in the product. The most critical monitored workmanship elements are minute spaces existing between the earth ground and current-carrying conductors. In ordinary environment of operation, shock, humidity, contaminants, shock, and dirt may fill these spaces.
The flow of current is allowed when the small gaps between earth ground and current-carrying conductors in electrical devices. This may cause a major electrical risk that must be rectified during manufacture before the product is made available on the market. Only DWV can be used for defect detection. Other methods may not be efficient like the DWV even though they can attempt to identify these defects.
An electric device that manufacturers use in verification of electrical insulation is a high potential tester. It is made of a source of high voltage, a switching matrix and a current meter. Connection of the source of voltage and the current meter is done by the matrix switch. Including a display and a microcontroller automates the process of testing.
After a product/appliance has been manufactured or assembled, it is usually normal that there will be some level of current leakage. The amount of current leakage experienced is usually minimal and is caused by voltages and internal capacitance within the product. This leakage is normal and should be expected in every device. However, there are certain cases where excessive leakage current flow can occur due to various reasons.
Faults in the design or disintegration of product insulation among many other reasons may be the cause of the excessive leakage. These flaws often cause excessive leaking of current and may give rise to electrical shock for any individual that comes into contact with the defective appliance. The essence of a hipot test is to ensure and verify that the product has enough insulation so that the user of the device may not be electrocuted.
Dielectric Withstanding Voltage, DWV, is another term used in reference to the hipot test. At the time of the test, a high voltage is applied between the conductors that carry current in the product and its metallic shielding. Upon completion, there will exist a resultant current that makes its way through the insulator material. The term used for this current is leakage current and is tested using a high potential tester.
This testing process makes one major assumption. The assumption is that if the insulation of the device is not broken by the deliberate application of excess voltage, then it should be safe for normal operation. The device should be able to withstand application of normal voltage, which is applied during normal use. The name Dielectric Withstanding Voltage comes from this assumption.
The test is aimed at stressing the insulator used in the appliance. Apart from stressing the insulator material, however, the test is additionally used to identify workmanship flaws in the product. The most critical monitored workmanship elements are minute spaces existing between the earth ground and current-carrying conductors. In ordinary environment of operation, shock, humidity, contaminants, shock, and dirt may fill these spaces.
The flow of current is allowed when the small gaps between earth ground and current-carrying conductors in electrical devices. This may cause a major electrical risk that must be rectified during manufacture before the product is made available on the market. Only DWV can be used for defect detection. Other methods may not be efficient like the DWV even though they can attempt to identify these defects.
An electric device that manufacturers use in verification of electrical insulation is a high potential tester. It is made of a source of high voltage, a switching matrix and a current meter. Connection of the source of voltage and the current meter is done by the matrix switch. Including a display and a microcontroller automates the process of testing.
About the Author:
We have all the detailed specifications on hipot tester the best on our related homepage. Simply use this link to reach the main website at http://www.rossengineeringcorp.com/products/measurement/ac-dc-digital-hipots.html.
0 comments:
Post a Comment